Appendix

Приложения

A.1.1. Presentation format of a closed spline curve of sketch

П.1.1.  Формат представления замкнутой сплайновой кривой эскиза

The model NURBS curve is given in text format. Contains degree, closed/unclosed, number of control points, the number of nodes, the coordinates of control points with weights, coordinates of nodes:

Модель NURBS кривой дается в текстовом формате. Содержит степень, замкнутость, количество управляющих точек, количество узлов, координаты управляющих точек с весовыми коэффициентами, координаты узлов:

5

true

30

30

-3.745219063463504,0,3.881856065295429,1

-4.009140700850242,0,3.739558384104992,1

-4.496939316230954,0,3.430128112298365,1

-5.101649021401893,0,2.897773079488597,1

-5.643709445256042,0,2.079404295162479,1

-5.914210052806324,0,0.950488092194088,1

-5.842580878702566,0,-0.212407122737029,1

-5.500537188970571,0,-1.347678352896134,1

-4.936813673846667,0,-2.414018754349181,1

-4.178907312715913,0,-3.384527252492646,1

-3.243701201251083,0,-4.235899354592384,1

-2.144801962390436,0,-4.940409323144714,1

-0.90184006941848,0,-5.454367439933843,1

0.452810639149284,0,-5.715660446551515,1

1.872696752854691,0,-5.662311099843693,1

3.294303889529337,0,-5.247792273843528,1

4.63553539719693,0,-4.456339648018953,1

5.790925649064297,0,-3.322388565857831,1

6.636026707938596,0,-1.936795165627948,1

7.051568714498869,0,-0.42287234767265,1

6.944191574229485,0,1.081155740009315,1

6.267911146923391,0,2.441491972290451,1

5.048367001696206,0,3.548436158284979,1

3.399699325147495,0,4.332828743740267,1

1.491212420130453,0,4.758926406648159,1

-0.479514026214218,0,4.820439532676454,1

-1.948297852204184,0,4.592755047418457,1

-2.913409491910526,0,4.283914199440976,1

-3.481297426076768,0,4.024153746485863,1

-3.745219063463504,0,3.881856065295429,1

0

0

0

0

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

0.44

0.48

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

 

 

A.1.2. Presentation format of a unclosed spline curve of sketch

П.1.2. Формат представления незамкнутой кривой Spline эскиза

5

false

25

31

-3.745219063463504,0,3.881856065295429,1

-3.945257925514671,0,3.706858226721109,1

-4.320673402124228,0,3.352294101961215,1

-4.809809987004567,0,2.806741085930889,1

-5.313414095353391,0,2.051824330071047,1

-5.69216705550725,0,1.064557817050591,1

-5.817026739592571,0,0.04180374122048,1

-5.686607739617019,0,-0.999592663782821,1

-5.30330903351873,0,-2.029472608170832,1

-4.675427553210312,0,-3.005698705450832,1

-3.819223812729903,0,-3.8810009708159,1

-2.761601542655135,0,-4.608455266873969,1

-1.542435914273767,0,-5.147147064549192,1

-0.218841766861503,0,-5.4691319318437,1

1.139997121593671,0,-5.558351228923636,1

2.460444712977606,0,-5.407341098626838,1

3.671369315514078,0,-5.015065801135205,1

4.710690393979156,0,-4.384692236550082,1

5.534069379752467,0,-3.521677405267781,1

6.116336103347627,0,-2.432293538971252,1

6.445084202396503,0,-1.122682492127629,1

6.502465535925412,0,0.097070611377661,1

6.430264341418049,0,1.10710285074012,1

6.331124776008285,0,1.822604323093552,1

6.268803464386732,0,2.190891734934752,1

0

0

0

0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1

1

1

1

1

 

A.1.3. Presentation format of an unclosed spline curve of sketch

 

П.1.3. Формат отредактированной незамкнутой сплайновой кривой эскиза

5

false

25

31

-3.654088511706436,0,4.046953170377426,1

-3.741498800303648,0,3.83134958824095,1

-3.918649029888546,0,3.405305309457186,1

-4.19137604132627,0,2.781730603422678,1

-4.568962840905921,0,1.981381091314436,1

-5.050317805487818,0,1.031105463936554,1

-5.49658635345181,0,0.124228252254504,1

-5.821508425405733,0,-0.753004990300334,1

-5.87119871366992,0,-1.626780319923437,1

-5.454217191561309,0,-2.526971097235663,1

-4.447692798959907,0,-3.456468152297339,1

-2.850719572855458,0,-4.378373518267988,1

-0.933341181709115,0,-5.168790500127329,1

0.81786156424809,0,-5.644940199358223,1

2.242562177061785,0,-5.757904485901322,1

3.28886414393639,0,-5.508057208100111,1

4.022504175452543,0,-4.943707504416584,1

4.548205227240398,0,-4.128159587956128,1

4.962019203443822,0,-3.117485142058323,1

5.322204312804031,0,-1.948034656775999,1

5.665321021220932,0,-0.643603894556894,1

5.940040433738705,0,0.497792766784396,1

6.148905914282236,0,1.406492626794257,1

6.289384838678373,0,2.035604947162611,1

6.359934016143799,0,2.355988840016749,1

0

0

0

0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1

1

1

1

1

A.2.3.1. Script Points_to_WEB

П.2.3.1. Скрипт Points_to_WEB

A.2.3.2. Script Points_to_WEB

П.2.3.2. Скрипт Points_from_WEB

A.2.3.3. Script NURBS_to_WEB

П.2.3.3. Скрипт NURBS_to_WEB

 

 

A.2.3.4. Script NURBS_from_WEB

П.2.3.4. Скрипт NURBS_from_WEB

A.3.4.1.1. Table of vertex coordinates of base polyline

П.3.4.1.1. Таблица координат вершин опорной  ломаной

-4.5,3,0

-1,5.5,0

5.588966520477818,3.755258447943838,0

4.710543491719026,-2.964677722060927,0

-2.360761889789256,-4.260351689480147,0

-5.215636733255333,-1.647043178922738,0

 

 

A.3.4.1.2. NURBS model of curve modeled on the base polyline

П.3.4.1.2. NURBS модель смоделированной кривой на опорной ломаной

3

false

19

23

-4.5,3,0,1

-3.65508016222,4.176415495144,0,0.954265865942

-2.434115026882,5.048533448957,0,0.956792024099

-1,5.5,0,1

1.5880200366,6.314721593493,0,0.875854873608

4.101203213676,5.64923708946,0,0.87198829365

5.588966520478,3.755258447944,0,1

7.257859385224,1.630695067225,0,0.844200263545

6.911639386584,-1.017887922373,0,0.847255306868

4.710543491719,-2.964677722061,0,1

2.762797401641,-4.687388772221,0,0.874423875902

0.061361417575,-5.182372384208,0,0.870651480715

-2.360761889789,-4.26035168948,0,1

-3.727452429571,-3.740098671338,0,0.954339942812

-4.723252844403,-2.828558291607,0,0.956938013468

-5.215636733255,-1.647043178923,0,1

-5.833734682512,-0.163866972916,0,0.933641253174

-5.57755079408,1.499683171968,0,0.928663379532

-4.5,3,0,1

0

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

6

A.3.4.2.1. Table of vertex coordinates of the tangent polyline

П.3.4.2.1. Таблица координат вершин касательной ломаной

-7,1,0

-6,6,0

2.70712160534611,7.338085975912799,0

6.994542624980554,1.649008084474787,0

-2,-6,0

-6.307455923116057,-3.985102870814067,0

 

A.3.4.2.2. NURBS model of curve constructed on a tangent polyline

П.3.4.2.2. NURBS модель кривой, построенной на касательной ломаной

3

false

19

23

-6.81095221662,-0.360812515919,0,1

-6.935995190904,0.539277616803,0,0.978539278217

-6.92568512562,1.371574371901,0,0.990595463708

-6.780499895678,2.097500521611,0,1

-6.288574150812,4.557129245939,0,0.944021773633

-4.089574278209,6.293588855447,0,0.86034102441

-0.832915310119,6.794063052437,0,1

1.433487370925,7.142357446467,0,0.916478150567

3.230358582792,6.643790755841,0,0.936586900597

4.161446689922,5.408308459841,0,1

5.813335338375,3.216379291701,0,0.817892133351

4.555568304631,-0.425108974282,0,0.781176819139

1.144724129064,-3.325709456326,0,1

-0.871852261049,-5.040617012392,0,0.912974908919

-2.805748579364,-5.623095272852,0,0.945579498909

-4.246032954726,-4.949373961496,0,1

-5.5522487505,-4.338365862056,0,0.937016525501

-6.491912979271,-2.657335540368,0,0.883260053841

-6.81095221662,-0.360812515919,0,1

0

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

6

 

 

A.3.4.3.1. Points for construct  a curve in the sketch

П.3.4.3.1. Точки для построения кривой на эскизе

-7.5,0,0

-6.5,3,0

-3.5,5,0

-0.5,3,0

0,0,0

1,-3,0

3.744278160084352,-5.007011263925123,0

7,-2.5,0

8,0,0

 

 

A.3.4.3.2. NURBS model from a sketch

П.3.4.3.2. NURBS модель из эскиза

5

false

45

51

-7.5,0,0,1

-7.497891572659655,0.115886307604062,0,1

-7.485674405413282,0.349630176778541,0,1

-7.443347785721541,0.706160166537114,0,1

-7.338861092910554,1.193370245957048,0,1

-7.128048628552691,1.81973052049272,0,1

-6.837157844309684,2.456100319061769,0,1

-6.466834280959619,3.087809509221541,0,1

-6.01845410981298,3.690010071758055,0,1

-5.494538411032939,4.226061061581786,0,1

-4.900656608360258,4.655046152544343,0,1

-4.247159045244257,4.938304285714258,0,1

-3.55106765280215,5.046452861681445,0,1

-2.837769750149404,4.965998969454785,0,1

-2.143263576902321,4.706854436093772,0,1

-1.507688907481328,4.296099461214356,0,1

-0.968481017989896,3.771017901938933,0,1

-0.553310039063225,3.172266506822981,0,1

-0.273854917736139,2.537451482447682,0,1

-0.117140829800504,1.893423401111207,0,1

-0.050377677401728,1.25602892244871,0,1

-0.030351448681334,0.63241200421139,0,1

-0.011305596178253,0.022422132893258,0,1

0.046688185691477,-0.57960966551328,0,1

0.169239461811511,-1.183360638681976,0,1

0.369983916231797,-1.797738921184591,0,1

0.653374180856924,-2.425918478686781,0,1

1.017226060120105,-3.060598346006862,0,1

1.45540436822246,-3.678719730471028,0,1

1.960211372169176,-4.237519169984779,0,1

2.522047061442178,-4.685551321998689,0,1

3.129250322163158,-4.972638870575212,0,1

3.767866785898923,-5.060135105433651,0,1

4.421416921116816,-4.931322496352807,0,1

5.070702135080828,-4.601218708855065,0,1

5.695290483353762,-4.107093434428741,0,1

6.274901398331719,-3.499938413429083,0,1

6.790895781751201,-2.835344275225979,0,1

7.227576663060842,-2.165384005874597,0,1

7.573962524152381,-1.528304169286234,0,1

7.823898886804553,-0.94604877682304,0,1

7.944368972787633,-0.532965138794781,0,1

7.989682774129699,-0.254355532988304,0,1

7.999893891839445,-0.082475454592914,0,1

8,0,0,1

0

0

0

0

0

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

0.5

0.525

0.55

0.575

0.6

0.625

0.65

0.675

0.7

0.725

0.75

0.775

0.8

0.825

0.85

0.875

0.9

0.925

0.950000000000001

0.975000000000001

1

1

1

1

1

1

 

 

A.3.4.3.3. NURBS model of edited curve

П.3.4.3.3. NURBS модель отредактированной кривой

6

false

49

56

-7.5,0,0,1

-7.5,0.689981757281,0,0.961528925695

-7.386443572608,1.401064145063,0,0.939017090631

-7.156911514368,2.098253834893,0,0.932036387668

-6.820013474119,2.746989715446,0,0.940158709667

-6.393946283718,3.31851832918,0,0.962955949491

-5.902995117257,3.793682557706,0,1

-5.512004989557,4.172100076763,0,0.974697673787

-5.07723368909,4.491043975814,0,0.954716316083

-4.603296689345,4.741468875846,0,0.943655898369

-4.10421817893,4.913347145659,0,0.945116392129

-3.603436217741,4.999497284117,0,0.962697768845

-3.130691209129,4.999497284117,0,1

-2.808021719763,4.999497284117,0,1.002109153829

-2.511899179053,4.958743489942,0,1.008521717879

-2.245617106907,4.878443215231,0,1.015377388335

-2.008068413722,4.758967324316,0,1.018815861383

-1.794907996865,4.598370973074,0,1.014976833209

-1.599338892038,4.390734890877,0,1

-1.208920010664,3.976226438655,0,1.019613873055

-0.901527278118,3.386787627994,0,1.023536647666

-0.645713067633,2.650617137527,0,1.01765248575

-0.419862300053,1.802606175108,0,1.007845549222

-0.208309569239,0.894341110878,0,1

0,0,0,1

0.174244695956,-0.748089468548,0,1

0.337275189733,-1.448032699403,0,0.968823769451

0.562036594886,-2.17522508411,0,0.929853481264

0.912179116604,-2.940621869506,0,0.906471308352

1.414857693825,-3.676529027095,0,0.922059423627

2.020832811803,-4.25405079201,0,1

2.284867280968,-4.505687613567,0,0.998743526444

2.55141791618,-4.70795706217,0,1.00176289134

2.81707803961,-4.858662025511,0,1.006228157915

3.081464511375,-4.958048237239,0,1.009309389398

3.347162951319,-5.007340430739,0,1.008176649017

3.619796922603,-5.007340430739,0,1

3.98267987708,-5.007340430739,0,0.990632090317

4.366168759864,-4.920361032126,0,0.97838722135

4.774467490792,-4.742523142287,0,0.968233485468

5.203457790081,-4.473715030235,0,0.965138975037

5.639510726572,-4.122334792371,0,0.974071782426

6.060187031293,-3.708720052114,0,1

6.617840112078,-3.160427857916,0,0.93433292004

7.137187214598,-2.515188599826,0,0.896691779339

7.564028902173,-1.821819609769,0,0.88575724744

7.857397256228,-1.139193251491,0,0.900209993888

8.000198836561,-0.520295163911,0,0.938730688226

8,0,0,1

0

0

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

7

7

7

7

7

7

8

8

8

8

8

8

8

 

A.4.1.1. The base polyline from circle

П.4.1.1.Опорная ломаная с окружности

 

-9.01404488843794,4.329779988547436,0

4.665915149797306,8.844729267472916,0

8.726328086781608,4.88376884402266,0

8,-6,0

-4.751113788790945,-8.799256659852613,0

-9.46924530469799,-3.214559590279058,0

П.4.1.2. NURBS модель кривой

3

false

19

23

-9.014044888438,4.329779988547,0,1

-6.401365498093,9.769042345055,0,0.795783242166

-0.671178635898,11.660239612391,0,0.795783242166

4.665915149797,8.844729267473,0,1

6.38534795953,7.937666162049,0,0.972624467937

7.776913793634,6.580184230764,0,0.972624467937

8.726328086782,4.883768844023,0,1

10.716799314356,1.327190813026,0,0.892117751374

10.445412087852,-2.739450549531,0,0.892117751374

8,-6,0,1

4.885751924529,-10.152330767295,0,0.838389171058

-0.183935769037,-11.265281155367,0,0.838389171058

-4.751113788791,-8.799256659853,0,1

-6.999191798797,-7.585418395497,0,0.953862134384

-8.647973576174,-5.633809643294,0,0.953862134384

-9.469245304698,-3.214559590279,0,1

-10.321225360269,-0.70485089945,0,0.950563465906

-10.16160059293,1.940716650542,0,0.950563465906

-9.014044888438,4.329779988547,0,1

0

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

6

 

A.4.2.1. Tangent polyline tangent to ellipse

П.4.2.1. Касательная ломаная к элипсу

-56.25259589034384,42.99951150185782,0,1

45.43393977940873,61.37754181419081,0,1

106.0324959305453,7.836789862768979,0,1

86.13879613450422,-36.3404377657717,0,1

7.523732801997639,-52.52258120089633,0,1

-78.2544259033288,-41.68389845501972,0,1

-103.6460450040054,-2.157043025908401,0,1

-91.27947726324729,24.54105236740899,0,1

A.4.2.2. DXF-model of NURBS curve

П.4.2.2. DXF-модель NURBS кривой

  0

SPLINE

  5

21E

330

1F

100

AcDbEntity

  8

0

100

AcDbSpline

210

0.0

220

0.0

230

1.0

 70

   13

 71

    3

 72

   29

 73

   25

 74

    0

 42

0.0000000001

 43

0.0000000001

 40

0.0000000000

 40

0.0000000000

 40

0.0000000000

 40

0.0000000000

 40

1.0000000000

 40

1.0000000000

 40

1.0000000000

 40

2.0000000000

 40

2.0000000000

 40

2.0000000000

 40

3.0000000000

 40

3.0000000000

 40

3.0000000000

 40

4.0000000000

 40

4.0000000000

 40

4.0000000000

 40

5.0000000000

 40

5.0000000000

 40

5.0000000000

 40

6.0000000000

 40

6.0000000000

 40

6.0000000000

 40

7.0000000000

 40

7.0000000000

 40

7.0000000000

 40

8.0000000000

 40

8.0000000000

 40

8.0000000000

 40

8.0000000000

 10

-72.5432883221

 20

34.4146455721

 30

0.0000000000

 41

1.0000000000

 10

-61.7819290983

 20

40.0856645632

 30

0.0000000000

 41

0.9820769642

 10

-48.6976005630

 20

44.3649423548

 30

0.0000000000

 41

0.9820769785

 10

-33.9938351010

 20

47.0223860920

 30

0.0000000000

 41

1.0000000000

 10

14.0142512527

 20

55.6989926892

 30

0.0000000000

 41

0.8426539850

 10

61.8884961451

 20

46.8394178587

 30

0.0000000000

 41

0.8426539351

 10

87.0304310260

 20

24.6257186465

 30

0.0000000000

 41

1.0000000000

 10

99.4021846945

 20

13.6948807448

 30

0.0000000000

 41

0.9553128265

 10

103.0754124945

 20

1.2701004380

 30

0.0000000000

 41

0.9553129072

 10

97.5576763664

 20

-10.9829388371

 30

0.0000000000

 41

1.0000000000

 10

90.2543815728

 20

-27.2011043789

 30

0.0000000000

 41

0.9248484179

 10

68.8132689197

 20

-39.9067284306

 30

0.0000000000

 41

0.9248487723

 10

38.0683276232

 20

-46.2352744990

 30

0.0000000000

 41

1.0000000000

 10

18.0596990270

 20

-50.3538553937

 30

0.0000000000

 41

0.9663594817

 10

-3.5228414390

 20

-51.1267676811

 30

0.0000000000

 41

0.9663596234

 10

-24.5011548207

 20

-48.4760080154

 30

0.0000000000

 41

1.0000000000

 10

-58.7017270491

 20

-44.1545215473

 30

0.0000000000

 41

0.9163828814

 10

-84.4217619741

 20

-32.0832739228

 30

0.0000000000

 41

0.9163827292

 10

-95.2093480928

 20

-15.2903567302

 30

0.0000000000

 41

1.0000000000

 10

-100.7646349573

 20

-6.6425024957

 30

0.0000000000

 41

0.9759916940

 10

-101.5201078634

 20

2.4326275900

 30

0.0000000000

 41

0.9759917156

 10

-97.4213539616

 20

11.2813983207

 30

0.0000000000

 41

1.0000000000

 10

-93.3758389025

 20

20.0152320916

 30

0.0000000000

 41

0.9765930909

 10

-84.8843915768

 20

27.9111333788

 30

0.0000000000

 41

0.9765930336

 10

-72.5432883221

 20

34.4146455721

 30

0.0000000000

 41

1.0000000000

 0

ENDSEC

  0

 

A.4.2.3. DXF-model from Fusion360

П.4.2.3. DXF-модель из Fusion360

 

0

SPLINE

5

100

100

AcDbEntity

8

0

100

AcDbSpline

70

1064

71

3

72

29

73

25

74

0

42

0.000000001

43

0.0000000001

44

0.0000000001

40

0

40

0

40

0

40

0

40

1

40

1

40

1

40

2

40

2

40

2

40

3

40

3

40

3

40

4

40

4

40

4

40

5

40

5

40

5

40

6

40

6

40

6

40

7

40

7

40

7

40

8

40

8

40

8

40

8

10

-72.543288322099997

20

34.4146455721

30

0

10

-61.781929098299997

20

40.085664563200012

30

0

10

-48.697600563000009

20

44.364942354799993

30

0

10

-33.993835101000002

20

47.022386092000005

30

0

10

14.014251252700001

20

55.698992689200004

30

0

10

61.888496145099992

20

46.839417858700003

30

0

10

87.030431026000002

20

24.625718646500001

30

0

10

99.402184694500022

20

13.694880744800003

30

0

10

103.07541249450003

20

1.2701004380000001

30

0

10

97.557676366400003

20

-10.982938837100001

30

0

10

90.2543815728

20

-27.201104378899998

30

0

10

68.813268919700022

20

-39.906728430599998

30

0

10

38.068327623199998

20

-46.235274498999999

30

0

10

18.059699027000001

20

-50.353855393700009

30

0

10

-3.5228414389999996

20

-51.126767681099999

30

0

10

-24.501154820700002

20

-48.476008015400005

30

0

10

-58.701727049100008

20

-44.154521547299986

30

0

10

-84.421761974099994

20

-32.083273922800004

30

0

10

-95.209348092800013

20

-15.290356730200001

30

0

10

-100.76463495729999

20

-6.6425024957000014

30

0

10

-101.5201078634

20

2.4326275900000001

30

0

10

-97.421353961600019

20

11.281398320699999

30

0

10

-93.375838902500007

20

20.015232091600001

30

0

10

-84.884391576799999

20

27.911133378800006

30

0

10

-72.543288322099997

20

34.4146455721

30

0

0

ENDSEC

0